\(\int \frac {1}{\sqrt {3+3 \sin (e+f x)}} \, dx\) [546]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 14, antiderivative size = 41 \[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)}} \, dx=-\frac {\sqrt {\frac {2}{3}} \text {arctanh}\left (\frac {\sqrt {\frac {3}{2}} \cos (e+f x)}{\sqrt {3+3 \sin (e+f x)}}\right )}{f} \]

[Out]

-arctanh(1/2*cos(f*x+e)*a^(1/2)*2^(1/2)/(a+a*sin(f*x+e))^(1/2))/f*2^(1/2)/a^(1/2)

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 47, normalized size of antiderivative = 1.15, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2728, 212} \[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)}} \, dx=-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f} \]

[In]

Int[1/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

-((Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]])])/(Sqrt[a]*f))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{f} \\ & = -\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a+a \sin (e+f x)}}\right )}{\sqrt {a} f} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.12 (sec) , antiderivative size = 76, normalized size of antiderivative = 1.85 \[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)}} \, dx=\frac {(2+2 i) (-1)^{3/4} \text {arctanh}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \left (-1+\tan \left (\frac {1}{4} (e+f x)\right )\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )}{\sqrt {3} f \sqrt {1+\sin (e+f x)}} \]

[In]

Integrate[1/Sqrt[3 + 3*Sin[e + f*x]],x]

[Out]

((2 + 2*I)*(-1)^(3/4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(e + f*x)/4])]*(Cos[(e + f*x)/2] + Sin[(e + f*x
)/2]))/(Sqrt[3]*f*Sqrt[1 + Sin[e + f*x]])

Maple [A] (verified)

Time = 0.80 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.83

method result size
default \(-\frac {\left (\sin \left (f x +e \right )+1\right ) \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{\sqrt {a}\, \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f}\) \(75\)
risch \(\frac {2 i \left ({\mathrm e}^{i \left (f x +e \right )}+i\right ) \sqrt {2}\, {\mathrm e}^{-i \left (f x +e \right )}}{f \sqrt {-a \left (i {\mathrm e}^{2 i \left (f x +e \right )}-i-2 \,{\mathrm e}^{i \left (f x +e \right )}\right ) {\mathrm e}^{-i \left (f x +e \right )}}}-\frac {2 i \left ({\mathrm e}^{i \left (f x +e \right )}+i\right ) \left (\arctan \left (\frac {\sqrt {-i a \,{\mathrm e}^{i \left (f x +e \right )}}}{\sqrt {a}}\right ) a \sqrt {-i a \,{\mathrm e}^{i \left (f x +e \right )}}+a^{\frac {3}{2}}\right ) \sqrt {2}\, {\mathrm e}^{-i \left (f x +e \right )}}{f \,a^{\frac {3}{2}} \sqrt {-a \left (i {\mathrm e}^{2 i \left (f x +e \right )}-i-2 \,{\mathrm e}^{i \left (f x +e \right )}\right ) {\mathrm e}^{-i \left (f x +e \right )}}}\) \(198\)

[In]

int(1/(a+a*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-(sin(f*x+e)+1)*(-a*(sin(f*x+e)-1))^(1/2)*2^(1/2)/a^(1/2)*arctanh(1/2*(-a*(sin(f*x+e)-1))^(1/2)*2^(1/2)/a^(1/2
))/cos(f*x+e)/(a+a*sin(f*x+e))^(1/2)/f

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 167, normalized size of antiderivative = 4.07 \[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)}} \, dx=\left [\frac {\sqrt {2} \log \left (-\frac {\cos \left (f x + e\right )^{2} - {\left (\cos \left (f x + e\right ) - 2\right )} \sin \left (f x + e\right ) - \frac {2 \, \sqrt {2} \sqrt {a \sin \left (f x + e\right ) + a} {\left (\cos \left (f x + e\right ) - \sin \left (f x + e\right ) + 1\right )}}{\sqrt {a}} + 3 \, \cos \left (f x + e\right ) + 2}{\cos \left (f x + e\right )^{2} - {\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right )}{2 \, \sqrt {a} f}, \frac {\sqrt {2} \sqrt {-\frac {1}{a}} \arctan \left (\frac {\sqrt {2} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-\frac {1}{a}}}{\cos \left (f x + e\right )}\right )}{f}\right ] \]

[In]

integrate(1/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

[1/2*sqrt(2)*log(-(cos(f*x + e)^2 - (cos(f*x + e) - 2)*sin(f*x + e) - 2*sqrt(2)*sqrt(a*sin(f*x + e) + a)*(cos(
f*x + e) - sin(f*x + e) + 1)/sqrt(a) + 3*cos(f*x + e) + 2)/(cos(f*x + e)^2 - (cos(f*x + e) + 2)*sin(f*x + e) -
 cos(f*x + e) - 2))/(sqrt(a)*f), sqrt(2)*sqrt(-1/a)*arctan(sqrt(2)*sqrt(a*sin(f*x + e) + a)*sqrt(-1/a)/cos(f*x
 + e))/f]

Sympy [F]

\[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)}} \, dx=\int \frac {1}{\sqrt {a \sin {\left (e + f x \right )} + a}}\, dx \]

[In]

integrate(1/(a+a*sin(f*x+e))**(1/2),x)

[Out]

Integral(1/sqrt(a*sin(e + f*x) + a), x)

Maxima [F]

\[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)}} \, dx=\int { \frac {1}{\sqrt {a \sin \left (f x + e\right ) + a}} \,d x } \]

[In]

integrate(1/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(a*sin(f*x + e) + a), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 111 vs. \(2 (38) = 76\).

Time = 0.42 (sec) , antiderivative size = 111, normalized size of antiderivative = 2.71 \[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)}} \, dx=\frac {\frac {\sqrt {2} \log \left ({\left | \frac {1}{\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )} + \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 2 \right |}\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {\sqrt {2} \log \left ({\left | \frac {1}{\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )} + \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 2 \right |}\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{4 \, f} \]

[In]

integrate(1/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

1/4*(sqrt(2)*log(abs(1/sin(-1/4*pi + 1/2*f*x + 1/2*e) + sin(-1/4*pi + 1/2*f*x + 1/2*e) + 2))/(sqrt(a)*sgn(cos(
-1/4*pi + 1/2*f*x + 1/2*e))) - sqrt(2)*log(abs(1/sin(-1/4*pi + 1/2*f*x + 1/2*e) + sin(-1/4*pi + 1/2*f*x + 1/2*
e) - 2))/(sqrt(a)*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))))/f

Mupad [B] (verification not implemented)

Time = 7.77 (sec) , antiderivative size = 49, normalized size of antiderivative = 1.20 \[ \int \frac {1}{\sqrt {3+3 \sin (e+f x)}} \, dx=-\frac {\mathrm {F}\left (\frac {\pi }{4}-\frac {e}{2}-\frac {f\,x}{2}\middle |1\right )\,\sqrt {\frac {2\,\left (a+a\,\sin \left (e+f\,x\right )\right )}{a}}}{f\,\sqrt {a+a\,\sin \left (e+f\,x\right )}} \]

[In]

int(1/(a + a*sin(e + f*x))^(1/2),x)

[Out]

-(ellipticF(pi/4 - e/2 - (f*x)/2, 1)*((2*(a + a*sin(e + f*x)))/a)^(1/2))/(f*(a + a*sin(e + f*x))^(1/2))